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Overview T

* Data-centric approach to the driving behavior modeling

* Al Risk Management for L4 mobility services

* Opensource community and collaborative research
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Three types of driving knowledge g
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Physical Legal, Cultural Empirical
(Societal) (Personal)
Example Location, Distances Speed limit Subjective feelling
variables Velocity Priority lane Driver behavior
Mathematical Forms Text Learnine capabilit
Form ‘if-then’ rules Data Distribution & cap y




Data collection (1999-)
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Signal Information of Driving
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Data centric approach for driving behavior
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Driver lIdentification through driving behavior NG e
Driver (Cognition-Decision-Action)
Command signal Frequency response Observed
for hitting pedal (Process of acceleration) pedal signal
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Driver identification results (2007, Miyajima) s
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Miyajima, Chiyomi; Nishiwaki, Yoshihiro; Ozawa, Koji; Wakita, Toshihiro; Itou, Katsunobu; Takeda, Kazuya; Itakura, Fumitada; ,Proceedings of the IEEE, vol.95,2,427-437,2007



Projects on driver behavior research INE- 1A

* Driver identification (GMM)

* Modeling car following behavior (GMM)

* Modeling lane-change trajectories (HMM+GMM)

» Detection of driver irritation (Bayesian network)

* Hazardous point detection from driving behavior

* Driver risk evaluation using event recorders

* Driving diagnosis and feedback system

* Driving data retrieval system

* Modeling driver gaze and vehicle operation (HMM)

* Tracking roadside signage observed by drivers

* Analysis of driver gaze behavior while automated driving

» Passenger anxiety detection using eye-blinking (Point process)
e Automated driving using deep leaning (CNN, RNN, AE, GAN, Transformer....)



Maximum likelihood prediction of driving behavior N A2 gg
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Nishiwaki, Yoshihiro; Miyajima, Chiyomi; Kitaoka, Norihide; Itou, Katsunobu; Takeda, Kazuya; ,2007 IEEE Intelligent Vehicles Symposium, vol.,,823-827,2007
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Extending to lane change behavior NE TP
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Nishiwaki, Yoshihiro; Miyajima, Chiyomi; Kitaoka, Hidenori; Takeda, Kazuya; ,2009 IEEE international conference on Acoustics, Speech and Signal Processing, vol.,,1377-1380,2009
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Estimating driver’s mental status N
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Malta, Lucas; Miyajima, Chiyomi; Takeda, Kazuya; ,IEEE Transactions on Intelligent Transportation Systems, vol.10,2,201-210,2009



Visual behavior as a key of inattentive driving N EE
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Mori, Masataka; Miyajima, Chiyomi; Hirayama, Takatsugu; Kitaoka, Norihide; Takeda, Kazuya; ,Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference on, vol.,,2020-2025,2013



Visual behavior of Risky/Safe lane change
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Excessive trust of the auto-driving
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Personalized Safety-focused Control of AD g
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Traffic context/ Vehicle status - rEm -
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Bao, Naren; Yang, Dongfang; Carballo, Alexander; Ozgiiner, Umit; Takeda, Kazuya; ,2019 IEEE Intelligent Transportation Systems Conference (ITSC), vol.,,3853-3858,2019



Does machine learning work for general traffic? W

G
Large amount Incident | Near-miss incident
of safe driving data data/@

Safe transition

® State: Traffic context

——= Path: Driving behavior ‘ Near-miss incident

* Defining the set of states for general traffic is the central issue.

Takeda, “Data to Value through Real World Data Circulation,” In the 2015 ITS World Congress, Context Network 2L
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Signal Symbolization g P
Driving signals
Velocity =
_ f\\u/:’\—f} o i el I I
Forceon | ——— " ~__ || Time
gas pedal - - __>¥£"’\Q_)
Steering
HDP (hierarchical Dirichlet wheel angle_ - S S— g
process) HMM g Segment \/\_/Qm/\/\f\/\fv\/\f b [\
(phoneme) CROAE B EBOCINEND B
NPY (NEStEd ‘
Pitman-Yor ) LM ((\:,Dé‘:‘dlé ( 1 X 2 X3X2X5X 6 )

Symbols

* Bottom-up approach for defining the discrete state set from large data.

[1] T. Taniguchi et al., Proc. IEEE-IV '12, pp. 849 — 853, 2012.



Discrete representation of latent space g A
Driving behavior (2 X 1 X 4 X 2 X 1 )
Traffic Context (112 (116 X 119 X 112 )
Combinatory chunk a by ¢ d e f a b
Time
. o . 0.9 0.86 0.88
Encoding 9hrs. driving signals os2
0.8 :
Driving Traffic Comb. 0.74
Total # of chunks 10,122 1,601 11,615 o
# of types 512 1,453 9,833 0.6
Average length 3.22 sec 20.37 sec 2.81 sec 05
Maximum length 143.6 sec 128.7 sec 112.3 sec Right lane changes Leftlane changes

Detection acc. (AUC) of risky lane changes

* 10K states is not easy to handle.
23

Mori, Takenaka, Bando et al., Prof. of 2015 IEEE Intelligent Vehicles Symposium (IV) June 28 - July 1, 2015. COEX, Seoul,



Behavior Science and Digital Signal Processing N
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NEDO/XAI project
Scene captioning for AD risk assessment

O HIL




Social Deployment of AD Tech. NI
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Project Target

Dedicated Service ODD

Vehicle
Initiative

Human
Initiative

Level of the
Autonomy

Service Comercialization ]| .
| Ultimate

I (R < AD

[ Service Car

| o Highway to
o Golf cart Mix Trafic

[ Personal Car

Auto-LC

o

simple Use Case Complexity complex
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Japan’s National Project: RoAD to the L4 N

%Héki

* Penetration of Remote Level 4 Service

* Deployment of driverless mobility technology for commercial uses 50
services in 50 areas in 2025

* Incorporation with 1oT/Al tech. for the new MaaS$ applications:
* Human resource development

* Building social acceptance: Solving liability issues, Social acceptance and
behaVior Cha nge th rough experience Opportunity_ Project on Research, Development, Demonstration and

Deployment (RDD&D) of Autonomous Driving toward
the Level 4and its Enhanced Mobility Services

Rural Area CIosed area (Factory) Closed area (Campus)

28



Managing Risk is the key to Innovations NE - AP

Technology Regulation Economy

Imperfect performance Social tolerance Loss recovery

* To ensure reliability, final risk assessments are conducted by a human expert,
drawing upon their professional experience and available evidence."

* While real traffic scenes can be compiled into a vast signal database, the lack of
transcriptions renders it unsearchable.

* We need an Al that aids human experts by transcribing traffic scenes into
readable text. This enables experts to assess risk based on relevant facts.

* The Al responsible for transcribing should have a shared understanding of the
traffic scene with the autonomous driving (AD) system.

29
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The goal of the project: D-Risk Assess System g

* Using tags and texts generated for the traffic scene, it becomes possible to
identify when, where, what type of risky events happened through risk
mining technology combining the similarity search and the key-word

search.
Similarity Search

Q Static Data Key-word Search
(Map)
Dynamic Signals |
B (Video/Sensor)
g Interface
Scene
Description

30



Unified structure of driving intelligence | P,
Traffic
Scene
Map
e Latent _
oo Sensor > Vehicle Control -
Space =
& Vehicle Self Driving
» Wait the through
ﬁ traffic then make
Transcription A jeft turn
Risk Assess

31
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NEDO/XAI project (2018-2022, 4.2m usD) N RSB g
{(NEDO NEDO ] el
¢ . . Ohio State U i \ﬁ 0
Nagoya Un|ve rS|ty M vehicle dynamics ﬂy' Ti;rﬂ[;}:rr}fzgr_:_‘n
, 93 | mvehicle DsP T Prof: Uit Ozguner L
e Prof. Kazuya Taked a< University Texas at Dallas
' B NLP [ | ieq:ej:n;ial:lata analytics
rof. John Hansen
NAGOYA W Prof. Koichi Takeda
UNIVERSITY
N~ \ Johns Hopkins, Carnegie Melon
M end-to-end DNN modelin
Prof. Shinji Watanabe : JUHNS HOPKINS

P~

Tier IV (AD open source)
University Startup
M POC, Consulting

™TierlV

Dr. Kevin Duh, Senior Research Scientist

HPOC

Aisan Technology

VARAN

LNIVERITTY

Human Dataware Lab. )
M Signal and Data analytics

O HEL
v At

SOMPO Japan
M Digital Risk Management

¥ @ SOMPO

Meitetsu (regional railway)c

Hitachi Butsuryu (Logistics)

Minami holdings (driving scho@Ltsource (Data)

MEIT ETSU

A/ a1k

Group of US-Jpn Universities, Start ups, Insurance company

32
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Transcription examples o
Pedestrians and a bicyclist while A near miss

turning left

Subjective Risk Level: 3 Subjective Risk Level:

Situation Description: The car turned Situation Description: While

left at the intersection. Afterward, a proceeding along a street without a
bicycle crossed the crosswalk. crosswalk, the car stopped to avoid

a bicyclist riding from the front. 33
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Data resources g %ﬁ@ki
Highway Lane Change Dataset (LC) Urban Travel Dataset (UT)
- Scenes of lane changing on Japanese highways - Scenes of urban travel throughout Japan
- 988 scenes labeled with risk level, situation, etc. - 2687 scenes with annotations

West-Shinjuku Dataset (WS)
- Self-driving proof-of-concept data, Nishi-Shinjuku
- 478 scenes with annotatlons

34



West Shinjuku data collection




West Shinjuku Data collection




Lexical simplification
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In response to feedback from risk assessors,
vocabulary related to on-street parking and
buses was also examined and incorporated

Example (Partial Excerpt):

Multiple cars and buses proceeded straight through
an intersection.

Multiple oncoming vehicles proceeded straight
through an intersection.

Multiple vehicles in the oncoming lane proceeded
straight through the intersection.

Multiple vehicles and buses proceeded straight
through the intersection.

Multiple vehicles proceeded straight through the
intersection.

Multiple vehicles in the oncoming lane proceeded
straight through the intersection.

37



# of words

Regularizing the vocabulary e o
# of scenes LC W. count LC Voc. size UT W. count UT Voc. size WS W.count WS Voc. size
250 60,878 194 38,295 165 70,937 220
500 121,349 245 77,632 216 135,701 262
750 178,255 265 116,350 234 NA NA
1000 233,988 275 155,174 257 NA NA
ST LC: Highway Lane Change Database (988 Scenes)
0 ms UT: Urban Travel Database (2687 Scenes)
> 2000 - _: Eé ézﬁ WS: Nishi-Shinjuku Proof-of-Concept Database (478 Scenes)
% ‘ e The speed of vocabulary growth is about 5%, 5
S new words for every 100 sentences, after the
z regularization.
é B Transfer learning is feasible
— G B Risk mining is consistent
# of scenes 38
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Technology benchmarking (in-domain, UT/UT) N A
(1) Effectiveness of using multi-modal signals
Signals used BLEU-4 ROUGE-L CIDEr
Video + Image + Driving 0.868 0.881 2.330
Video 0.839 0.862 2.087
Video + Driving 0.858 0.874 2.270
(2) Effectiveness of using visual language model (vs. LSTM)
Models used BLEU-4 ROUGE-L CIDEr
Transformer visual language model 0.868 0.881 2.330
Recurrent Neural Network model 0.843 0.864 2.242

(3) Effectiveness of multi-label training with scene/behavior classes

Tasks trained for Precision Recall F-value
For captioning and scene/behavior class 92.6 34.0 49.8
Only for captioning 91.5 32.8 48.3

39
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Performance under the new domain gL 8

* Urban Traffic data set (UT)

2687 traffic scenes including (at least) i [ — —
. : . Encoder Decoder
100 risky scenes selected out from 30K wWord Embocings | Clamamtntor ﬂﬂiﬂ - |
scenes of human urban driving signals. e - g:: soe s ;
= — : : Motion Motion
: - : ¢ stop 988 ) 0.7 [+Erci)der* TDecoder ] stopped
Sensor Feature % E s E s ego-vehicle Gg::rtia(:ir:) n
‘ [
Sensor Sensor J
. . Encoder I | Decoder
* West Shinjuku AD POC (WS) HERN
: : : : ego-vehicle

» 478 traffic scenes collected through AD

POC at West Shinjuku Area. Signals are chunked into fix-length (6 sec.)

segments, i.e., a scene. Class labels as well as
the transcriptions for the are given to 478
scenes.

40



Domain adaptation

b
A RFHE

148

* Transfer learning from general traffic model (train by UT: 2687 scenes) to
the Nishi-Shinjuku service ODD (WS: 478) using 80% (360 scenes) of the
dataset for training and 20% (90 scenes) for testing.

* The length of the sentence is added to the Loss function.

* The scene classification tag is also added for training (multi-task training).

BLEU-4 | ROUGE-L | CIDEr |"Verases.
length
Matched (Train UT / Test UT) 0.868 0.881 2.330 14.1
Unmatched (Train UT / Test WS) 0.176 0.433 0.062 11.9

41
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Domain adaptation
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* Transfer learning from general traffic model (train by UT: 2687 scenes) to
the Nishi-Shinjuku service ODD (WS: 478) using 80% (360 scenes) of the
dataset for training and 20% (90 scenes) for testing.

* The length of the sentence is added to the Loss function.
* The scene classification tag is also added for training (multi-task training).

BLEU-4 | ROUGE-L | cIDEr |"Verage>.
length
Matched (Train UT / Test UT) 0.868 0.881 2.330 14.1
Unmatched (Train UT / Test WS) 0.176 0.433 0.062 11.9
Transfer (Train UT & WS / Test WS) 0.680 0.683 0.883 28.8

42
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The goal of the project: D-Risk Assess System g

* Using tags and texts generated for the traffic scene, it becomes possible to
identify when, where, what type of risky events happened through risk
mining technology combining the similarity search and the key-word

search.
Similarity Search

Q Static Data Key-word Search
(Map)
Dynamic Signals |
B (Video/Sensor)
g Interface
Scene
Description

43
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The goal of the project: D-Risk Assess System g

* Using tags and texts generated for the traffic scene, it becomes possible to
identify when, where, what type of risky events happened through risk
mining technology combining the similarity search and the key-word

search.
Similarity Search

Q Ctatie Nata Kev-word Search @
. . . T Hél 'Lb
Dyn: 65% improvement in efficiency e
B (Vid (From 22.5 to 8 day-person/route)
Scene (—]

Description



Unified structure of driving intelligence
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Scenario
Parameters

Traffic

Scene
03{0 Sensor
& Vehicle

Vv

Latent
Space

Vehicle Control

Transcription

®TierlV

Self Driving

_ Wait the through

l'fé traffic then make

> \_E 7& left turn

o .
Risk Assess
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Latent space as a predictive world model
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AR R

MAKE NEW STANDARDS.
RBET

K?ﬁ%

* Learning rich predictive
world model from partial
observations only.

* Extended to path generation

i :. K, Probabiy lisls
110 o Pom ply; )
T Direction p{i¥; ;) V& & [0, 2x)
-

k]
= — Misirresn Bolieood graph
it bt pavth gragh

iiiii

-----

[1] R. Karlsson, et al., “Predictive World Models from Real-World Partial Observations” (IEEE MOST) 2023
[2] R. Karlsson, et al., “Learning to Predict Navigational Patterns from Partial Observations”, arXiv preprint, 2023

BEV of accumulated semantically labeled pomt clouds

Past

T

Latent distribution of plausible road geometries
z € R
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i

Partial Latent Posterior
observation space prediction
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Graph representation of the semantics g

* Road Scene Graph: Estimating pair-wise relationships among traffic
objects and map components, arrange them as a topological graph.

* Real-to-Synthetic: Generate near-realistic traffic scenes from RSG.
* RSG-Search: Querying the traffic scene dataset with RSG as a key.

Actor interaction sub-graph
(incomplete)

4 N
<---- l
~ -~
Ut
\_ Q ) .
- \ - N Estimate
blank
\ / edges \ /
a vector map \. - J
with actor information Road connection sub-graph
Traffic observation Vanila graph Structural semantics

50

Y Tian, A Carballo, R Li, K Takeda, 2021 IEEE Intelligent Vehicles Symposium (IV), 546-552, 2021






Opensource community and
collaborative research

Autoware and Autoware Foundation
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What is Autoware and the Autoware Foundation (AWF)?

The first all-in-one open source software for
autonomous driving (AD). Apache License 2.0.

Built on Robot Operating System (ROS) and enables
commercial deployment of AD in a broad range of vehicles
and applications.

A not-for-profit organization based in Japan, aiming at
promoting the industry penetration and R&D of
Autowaree

Established in 2018; 80+ companies, government
organizations and universities world-wide joining the
AWEF on top of 1000+ individual active engineering
contributors.

Showed up many academic/industry events annually
e.g.. IEEE IV, ICRA and Automotive Expos.

Held meetups/gatherings globally to promote
collaborations and business development.

Growth of the Autoware Foundation

Affiliated organizations - Industry&Government
- CoE universities - Premium

Academic&Non-profit

—G3—

Americas

Europe

Other Asia

15 China
& Taiwan

Japan

Founding Today Geo distribution
(2018) (2023)

* The AWF made a steady growth worldwide.
» * The membership portfolio is well balanced in
terms of industry and geography.
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2020

Autonomous Valet Parking (AVP)
support in Autoware.Auto v1

Autoware ODD Roadmap (not exhaustive)

2021

Cargo Delivery supportin
Autoware.Auto v2

Autonomous Racing
Autoware base package for IAC

2022

Bus on predefined route support
developed in Autoware.Universe

A\

Autonomous Racing
Autoware running on F1TENTH

)

2023~

AVP, Cargo and Bus support in
Autoware.Core

Taxi use case development in
Autoware.Universe

Improved Object Detection

High speed highway driving
Dense urban driving scenarios
Autoware usability enhancements
Open AD Kit 3.0
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Example of technical output (1/4) — Autonomy Software WG

ITRI (Taiwan) and LeoDrive (Turkey) leading tests with real vehicle
e Video shooting done with LeoDrive in February

e Almost ready to be released in public v  ERRITTe ol

e Another demo planned with ITRI bus in August

Next Step
e Clean up the code in Universe repository
e Start working on Autoware Core implementation




Example of technical output (2/4) —

F1Tenth

Integrating F1Tenth to Autoware Core/Universe.

Create training course using F1Tenth
Holding a tutorial session in V2023

$ =

LIDAR RGBD Cameras Electric Speed

Controller

4 / - i f  GPU Computing Platform
— L = — __ n Jetson TX1/TX2

\ Chassis Design B i System Integration
/ Software Architecture

Research Enabled ;

ROS BREOIEROS of | safe Secure || Goordinated || Efficient
Autonomy | | Autonomy ‘ Autonomy | | Autonomy
T o SLAM Reinforcement Simulator
cuna Learning
GPU

Percept:on Pianning  Control

[
chraes ﬁ‘i f @_} L ]

Racing WG

EV GoKart

e EV Grand Prix Competition took place in May : video
link

e Planning to set this as a reference design platform for
Center of Excellence

ain Control Unit Go-Kart Main View

Upper Steer By Wire
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Example of technical output (3/4) — Reference Design WG @

Objective Focus on defining reference design for hardware and OS/Middleware Layer (e.g., E/E architecture)

WGs to align areas of collaboration AD API WG: APIs to other Applications (e.g. IVI, V2X)
. Reference Implantations A LR R R
. Safety/Certification
. etc. A
Open AD Kit WG: Autoware
implemented in a
microservices architecture on
SOAFEE (EWAOL)
ROS/DDS ROS/DDS - - ROS/DDS | ROS/DDS
4 | OS/RTOS \ | OS/RTOS | | osRrTos | | osRTOS |
Ref Des WG: HW v EWAOL | EWAOL |
oo [ Jlf o Tuon
requirements for Auto and AD/ADAS Vi ccu TCU
Safety
l | |
Steering, DBW

Accel, Brake
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Example of technical output (4/4) — ODD WG

Define ODD parameters for Bus Service
Achievements  Create test scenarios from use cases for Bus service scene
Cl runs tests against 138 scenarios every week to check regression

On-going Tasks  Started to define new scenarios for robo-taxi areas

= . . ] o110 00cds

Parameters EerEmEiEE Parameters

Crosswalk area

i
E NPC1 Deceleration
area

i
V_C'ﬁ NPC2 Stop area
i

f -Vr:15km/h

-Db i [20-40]m by 20
Vb i [5-15] (km/h) by
5

-Vp:4 km/h

-Total 9 patterns

-Ve: [40,50] km/h

*V_o1. V_o2. V_o3 '

-D: [60-90]1m by 10 ' e Y are all fixed to 30 km/h ;

-Total 8 patterns i — ‘D1: [Ve*3.0secx2,3] !
]| ‘D2: [ve*3.0secx2,3] |
{ -Total 8 patterns

+V: [30,50] km/h




Example of strategic planning output (1/2) @

Visi The AWF SPC helps to coordinate Industry and Academic alliances and creates business
ision
opportunities for member organizations to engage and promote their solutions.

THE
Many opportunities to engage with and promote solutions thru the @ FOUNDATION
Autoware Foundation driven initiatives:

«  AWF Alliances: Collaborative engagements to commercialize

Autoware based AD solutions VT & BS\/HC F1
 Autoware Open AD Kit: Platform and ecosystem to enable SDV =~ [ sccomsormum ~ ALLIANCE
development of Autoware based AD solutions
- Autoware Center of Excellence: Engagement with academic g SOAFEE '“:_.'

community to advance Autoware development
« Autoware I/O: Promote solutions on AWF website and thru Autoware
based Reference Designs



Example of strategic planning output (2/2)

Vis: The AWF SPC helps to coordinate across Alliance partners in executing initiatives such as the
Ision
Autoware Open AD Kit.

T e (=) e
FOUNDATION % SOAFEE =4 ABL$IVADCCE N1

— S

Trunk
™
=3

/4

lity Aware !
strat
| | T
: E
} QM/ASILB Service QW/ASILBService || QWASILB ASI,D v
[ Service Service
; Mixed Gitical Orchestrator ;
; HAL HAL |
' Patform Feature Discovery HL HAL I ! eSync
‘ = : lient m ;|
esync

WCGCL‘J".'
” |* ”””””” E’m;;e"””””"’”‘”’ﬁ’m’w; ::: ] SOAFEE Framework 3 : u Tcu
e 6 Q @. [ HiglcnfnpuleG’U — || High Safety CPU ] eSy
Full OSS stack for SDV architecture with cloud/edge Specifications for OTA Open specifications for
Autonomous Driving parity of containerized Automotive updates in Automotive integration and verification of
Applications

Automotive Functions

» Autoware Open AD Kit brings multiple ecosystems together to advance AD solutions for SDVs
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Autoware CoE Network

Goal is to expand the ecosystem of developers actively contributing/advancing
Autoware

North America Europe Asia

N pq% -
e 1%\ POLITECHNIKA POZNANSKA [ =y N
W) s THE UNIVERSITY
s' Poznan University of TechnOlOlgy
‘%%_mﬂ‘é

@ A1 (

AUTOWARE

FOUNDATION %‘i

Center of Excellence (:_’ OF TOKYO

% AYNE STATE £7) Totwan
Penn WUNIVERSITY UI?\l/‘gri?ty W l\IIJé\(zgROSIErA

JSAE Auto Al Challenge
Racing 22

[ BENEGALF v L 22252022
(-f:#"?l’?b—-“/a:f)

Japan Automotive ALCHallenge

Cargo ‘23 '
Autoware + V2X

&Penn 1st Place

Weis’n Shuttle ‘24 . »
and more universities

interested in joining...
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* Data-centric approach to the driving behavior modeling
* Al Risk Management for L4 mobility services

* Open-source community and collaborative research

Thank you for your attention.

kazuya.takeda@nagoya-u.jp





